Tristel

TRISTEL DUO OPH Les données

Mousse désinfectante de haut niveau pour l'ophtalmologie

Un ensemble de preuves complet

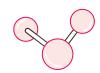
Cliquez ici pour commencer

SOMMAIRE

Å propos de Tristel DUO OPH	03
L'essentiel	04
Sur l' essuyage	07
Sur l' immersion	09
Dans la pratique	12
Sur la détergence	13
Les organismes préoccupants	14
La résistance antimicrobienne (RAM)	16
Les biofilms	17

Navigation dans le document

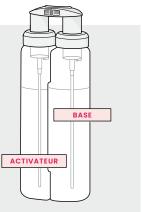
Des icônes de navigation sont disponibles en haut de chaque page pour vous permettre de parcourir aisément l'ensemble du document.



À PROPOS DE TRISTEL DUO OPH

La chimie

Depuis plus de 30 ans, le dioxyde de chlore est la chimie utilisée par Tristel.


Le dioxyde de chlore Tristel résulte d'une réaction chimique entre le chlorite de sodium et l'acide citrique et se dégrade en eau et en sels.

Commercialisé dans + de 40 pays, le dioxyde de chlore Tristel a permis de réaliser + de 100 millions de procédures de désinfection dans le monde.

La conception

Grâce à cette conception intuitive, nos produits au dioxyde de chlore génèrent une chimie active **au moment de l'utilisation.**

Cette solution n'est pas classée comme dangereuse au point d'utilisation, conformément à la réglementation CLP, et ne contient ni perturbateurs endocriniens ni substances CMR. La mousse Tristel DUO OPH ne contient ni éthanol, ni composés d'ammonium quaternaire (CAQ).

L'emploi

Tristel DUO OPH est destiné
à la **désinfection de**haut niveau des dispositifs
médicaux utilisés en ophtalmologie,
tels que les lentilles de diagnostic,
les prismes pour tonomètres,
les pachymètres, les sondes
A-scan et B-scan.

Tristel DUO OPH est bactéricide, levuricide, fongicide, virucide, mycobactéricide, et sporicide, avec un temps de contact uniforme de 30 secondes.

Son efficacité a été rigoureusement validée selon des méthodes d'essai reconnues et pertinentes à l'échelle internationale.

L'ESSENTIEL

Conformité à la norme EN 14885

En Europe, la norme EN 14885 définit les essais à réaliser pour évaluer l'efficacité des désinfectants destinés au domaine médical. **Tristel DUO OPH répond aux méthodes d'essai pertinentes de cette norme, conformément à son usage prévu.**

Dans les établissements de santé, la présence de matières organiques et de souillures est fréquente. Il est donc essentiel que les produits conservent leur efficacité même dans des conditions de saleté. Les méthodes d'essai prennent en compte deux types de conditions simulant les environnements dans lesquels les produits sont utilisés:

Propreté – 0,3g/I de protéines. Cette condition représente une surface qui a été nettoyée avant désinfection.

Saleté – 3g/I de protéines + 3mI/I de sang. Cela représente une surface contaminée qui n'a pas été nettoyée avant désinfection.

HIÉRARCHIE MICROBIENNE DE LA RÉSISTANCE AUX DÉSINFECTANTS

4	i	ò	١	
Ų	2	,	J	
ı	è	á	ŕ	
ŀ	5	٤	Ļ	
ï	à	ø	١	
L		ŀ		

MÉTHODE D'ESSAI	TYPE D'ORGANISME	ORGANISME	CONDITIONS	TEMPS DE CONTACT	RÉSULTAT
			Propreté	30S	Validé
		Bacillus subtilis	Saleté	30S	Validé
EN 17126			Propreté	30S	Validé
(P2, E1)	Spores	Bacillus cereus	Saleté	30S	Validé
	bactériennes	21	Propreté	30S	Validé
		Clostridioides difficile	Saleté	30S	Validé
EN 17846			Propreté	30\$	Validé
(P2, E2)		Clostridioides difficile	Saleté	30S	Validé
		Mycobacterium	Propreté	30S	Validé
EN 14348		terrae	Saleté	30S	Validé
(P2, E1)	Mycobactéries	Mycobacterium	Propreté	30S	Validé
		avium	Saleté	30S	Validé
		Dellesions	Propreté	30S	Validé
		Poliovirus	Saleté	30\$	Validé
EN 14476		A -15	Propreté	30\$	Validé
(P2, E1)	Virus	Virus Adénovirus	Saleté	30\$	Validé
		Norovirus murin	Propreté	30S	Validé
			Saleté	30\$	Validé
EN 13624	·	Champianons Aspergillus	Propreté	30\$	Validé
(P2, E1)	Champignons	brasiliensis	Saleté	30\$	Validé
EN 13624			Propreté	30\$	Validé
(P2, E1)	Levures	Candida albicans	Saleté	30\$	Validé
EN 16615			Propreté	30\$	Validé
(P2, E2)	Levures	Candida albicans	Saleté	30\$	Validé
		Staphylococcus	Propreté	30\$	Validé
		aureus	Saleté	30\$	Validé
EN 13727	Darakávia	Pseudomonas	Propreté	30\$	Validé
(P2, E1)	Bactéries	aeruginosa	Saleté	30\$	Validé
		Enterococcus	Propreté	30\$	Validé
		hirae	Saleté	30\$	Validé
		Staphylococcus	Propreté	30\$	Validé
		aureus	Saleté	308	Validé
EN 16615		Pseudomonas	Propreté	30\$	Validé
(P2, E2)	Bactéries	aeruginosa	Saleté	30S	Validé
		Enterococcus	Propreté	30S	Validé
		hirae	Saleté	30S	Validé

Phase 2, Étape 1 : P2, E1 et Phase 2, Étape 2 : P2, E2.

Selon les critères d'acceptation de la norme européenne : Spores bactériennes, mycobactéries, champignons, levures et virus : réduction ≥ 4 log₁₀. Bactéries : réduction ≥ 5 log₁₀. Exigence supplémentaire pour les essais à 4 zones : F2-F4 < 50 ufc/cm².

SUR L'ESSUYAGE

Efficacité démontrée par application sur surface

Tristel DUO OPH est une mousse conçue pour être appliquée sur un dispositif à l'aide d'une lingette sèche. Son efficacité a été rigoureusement évaluée selon la méthode des 4 zones définie par la norme EN 16615, ainsi que la norme 17846. Ces normes sont élaborées pour tester les produits appliqués par essuyage sur une surface. Les essais couvrent un large éventail de micro-organismes fréquemment rencontrés dans les environnements de soins, notamment sur les dispositifs ophtalmiques et dans les contextes cliniques où ces derniers sont couramment utilisés.

MÉTHODE D'ESSAI	TYPE D'ORGANISME	ORGANISME	CONDITIONS	TEMPS DE CONTACT	RESULTAT
EN 17846	Consuma la matéria mana	Clostridioides	Propreté	30s	Validé
(P2, E2)	Spores bactériennes	difficile	Saleté	30s	Validé
		Mycobacterium	Propreté	30s	Validé
EN 16615	Mycobactéries	, terrae	Saleté	30s	Validé
(P2, E2)	Mycobacteries	Mycobacterium	Propreté	30s	Validé
		avium	Saleté	30s	Validé
		Adénovirus	Propreté	30s	Validé
		Adenovirus	Saleté	30s	Validé
EN 16615 (P2, E2)	Virus	Virus Norovirus murin	Propreté	30s	Validé
			Saleté	30 s	Validé
		Coronavirus bovin	Saleté	30s	Validé
EN 16615	Champignons	Aspergillus brasiliensis	Propreté	30s	Validé
(P2, E2)	Champignons	brasiliensis	Saleté	30s	Validé
EN 16615	Levures	Candida	Propreté	30s	Validé
(P2, E2)	Levures	albicans	Saleté	30s	Validé
		Staphylococcus	Propreté	30s	Validé
		aureus	Saleté	30s	Validé
EN 16615	Bactéries	Enterococcus	Propreté	30s	Validé
(P2, E2)	Bucteries	hirae	Saleté	30s	Validé
		Pseudomonas	Propreté	30s	Validé
		aeruginosa	Saleté	30s	Validé

Selon les critères d'acceptation de la norme européenne :

Spores bactériennes, mycobactéries, champignons, levures et virus : réduction ≥ 4 log₁₀. Bactéries : réduction ≥ 5 log₁₀. Exigence supplémentaire pour les essais à 4 zones : F2-F4 < 50 ufc/cm².

SUR L'ESSUYAGE, SUITE

La norme EN 16615 évalue l'efficacité d'un désinfectant appliqué à l'aide d'une lingette. Lors de ce test, le désinfectant est appliqué sur une lingette enroulée autour d'un poids standardisé, puis déplacée sur plusieurs zones d'essai. L'une de ces zones est ensemencée avec le micro-organisme et une substance interférente. Après l'essuyage, la charge microbienne sur chaque zone est mesurée. Ce test permet également de vérifier si des micro-organismes sont transférés d'une zone à l'autre, garantissant que la contamination est éliminée, et non propagée.

La norme EN 16615 prescrit un poids standardisé compris entre 2,3 et 2,5 kg. Cette plage reflète-t-elle vraiment la force exercée lors d'un essuyage en conditions réelles?

Tristel a mis au point une méthode d'essai modifiée à partir de la méthode des 4 zones, en y intégrant des poids variés. Tristel DUO OPH a ainsi été testé avec des poids inférieurs et supérieurs à ceux prévus par la norme, afin de simuler les différentes forces exercées lors de l'essuyage manuel. Les résultats ont montré que Tristel DUO OPH reste efficace, même lorsqu'il est soumis à des forces d'essuyage variables.

MÉTHODE D'ESSAI	FORGE ARRIVOUÉE SUR LA SURFACE (VO)	0001110145	TEMPS DE CONTACT	RÉSULTAT	
METHODE D ESSAI	FORCE APPLIQUÉE SUR LA SURFACE (KG)	ORGANISME	TEMPS DE CONTACT	SÉRIE 1	SÉRIE 2
	1.0		30 s	Validé	Validé
	1.5		30s	Validé	Validé
ESSAI EN 16615	2.0	Staphylococcus	30s	Validé	Validé
(P2, E2) ADAPTÉ	2.5	aureus	30 s	4.05*	Validé
	3.0		30s	Validé	Validé
	3.5	30s	Validé	Validé	

Selon les critères d'acceptation de la norme européenne : Bactéries : réduction $\geq 5 \log_{10}$

*Réduction ≥5 log₁₀ non atteinte ; toutefois, ce résultat est considéré comme une valeur aberrante car la deuxième série a montré une destruction complète des micro-organismes dans la même catégorie de poids, ainsi que pour tous les poids testés au-dessus et en dessous. Aucun organisme n'a été transféré aux autres zones d'essai, respectant les critères d'acceptation de ≤50 ufc/cm².

Dans une autre étude, Tristel DUO OPH a été appliqué sur une surface contaminée en PVC à l'aide d'une lingette sèche. La lingette a seulement été en contact avec la surface pendant 1 seconde, sans aucun mouvement d'essuyage. Les résultats démontrent que même lorsque la lingette a un contact minimal avec la surface, un volume suffisamment efficace de solution est transféré.

MÉTHODE D'ESSAI	TYPE D'ORGANISME	ORGANISME	CONDITIONS	TEMPS DE CONTACT	RESULTAT
ESSAI EN 16615 (P2, E2) ADAPTÉ	Bactéries	Enterococcus hirae	Propreté	30s	Validé

Phase 2, Étape 2 : P2, E2.

Selon les critères d'acceptation de la norme européenne : Bactéries : réduction ≥5 log₁₀ et F2-F4 : ≤50 ufc/cm².

SUR L'IMMERSION

Efficacité démontrée de la chimie sans essuyage

Bien que Tristel DUO OPH soit conçu pour être appliqué par essuyage, son efficacité désinfectante a également été évaluée en immergeant des surfaces contaminées dans la solution.

Ces tests d'immersion, également appelés essais porte-germes, permettent de mesurer l'efficacité intrinsèque de la chimie.

MÉTHODE D'ESSAI	TYPE D'ORGANISME	ORGANISME	CONDITIONS	TEMPS DE CONTACT	RÉSULTAT		
		Mycobacterium	Propreté	30s	Validé		
EN 14563	Mycobactéries	, terrae	Saleté*	30 s	Validé		
(P2, E2)	Wycobacteries	Mycobacterium	Propreté	30s	Validé		
		avium	Saleté*	30s	Validé		
		Adénovirus	Propreté	30s	Validé		
	Virus	Adenovirus	Saleté	30s	Validé		
EN 17111		Norovirus	Propreté	30s	Validé		
(P2, E2)		Viius	murin	Saleté	30s	Validé	
				Polyomavirus SV40	Propreté	30s	Validé
			1 Olyomavii as 3 v 40	Saleté	30s	Validé	
EN 14562 (P2, E2)	Champignons	Aspergillus brasiliensis	Propreté	30s	Validé		
EN 14562	Levures	Candida albicans	Propreté	30s	Validé		
(P2, E2)	Levules	Candidozyma auris (anciennement Candida auris)	Saleté*	30s	Validé		
		Staphylococcus aureus	Propreté	30s	Validé		
EN 14561 (P2, E2)	Bactéries	Enterococcus hirae	Propreté	30s	Validé		
		Pseudomonas aeruginosa	Propreté	30s	Validé		

*Test réalisé en présence de 5 % de SFB

Phase 2, Étape 2 : P2, E2

Selon les critères d'acceptation de la norme européenne : Mycobactéries, champignons, levures et virus : réduction ≥4 log_{lo}

Bactéries : réduction ≥5 log₁o.

SUR L'IMMERSION, SUITE

Tristel DUO OPH a été testé sans action mécanique ou essuyage. Ces essais consistent à appliquer le désinfectant sur une surface et à le laisser agir pendant le temps de contact, sans essuyer.

L'efficacité de la chimie, sans l'action supplémentaire de l'essuyage, a été démontrée.

NORME	TYPE D'ORGANISME	ORGANISME	CONDITIONS	TEMPS DE CONTACT	RESULTAT
		Poliovirus	Saleté*	30s	Validé
		Adénovirus	Saleté*	30s	Validé
		Calicivirus félin	Saleté*	30s	Validé
		Virus de l'hépatite B (VHB)	Saleté*	30s	Validé
ASTM E-1053	Virus	Virus herpès simplex (HSV)	Saleté*	30s	Validé
		Virus de l'immunodéficience humaine (VIH)	Saleté*	30s	Validé
		Virus de la grippe A (H1N1)	Saleté*	30s	Validé
EN 13697 (P2, E2)	Levures	Candida albicans	Propreté	30s	Validé
		Staphylococcus aureus	Propreté	30s	Validé
EN 13697 (P2, E2) Bactéries	Destávica	Enterococcus hirae	Propreté	30s	Validé
	Bucteries	Pseudomonas aeruginosa	Propreté	30s	Validé
		Escherichia coli	Propreté	30 s	Validé

*Test réalisé en présence de 5 % de SFB

Phase 2, Étape 2 : P2, E2

Selon les critères d'acceptation de la norme européenne :

Virus et bactéries : réduction ≥4 log₁₀.

Levures : réduction ≥3 log₁₀.

DANS LA PRATIQUE

Efficacité confirmée sur les dispositifs médicaux

Afin de reproduire des conditions d'utilisation réelles, Tristel DUO OPH a été testé sur **des dispositifs** ophtalmiques authentiques, volontairement contaminés par des micro-organismes cliniquement significatifs.

Les tests en conditions simulées consistent à contaminer les dispositifs avec des micro-organismes et une substance interférente, à appliquer le désinfectant conformément aux instructions d'utilisation, puis à mesurer la réduction de la charge microbienne.

Cette approche permet de démontrer l'efficacité du désinfectant dans des situations concrètes d'usage.

DISPOSITIF OPHTALMIQUE	ORGANISME	TEMPS DE CONTACT	RÉSULTAT
Prismes pour tonomètre	Mycobacterium terrae	30s	Validé
Pachymètre*	Mycobacterium terrae	30s	Validé

*Les tests comprennent une étape de réduction des résidus à l'aide de la lingette Tristel DRY Wipe. Selon les critères d'acceptation de la norme européenne : Mycobactéries (EN 14563) : réduction ≥4 log₁₀-

Cette liste n'est pas exhaustive, Tristel DUO OPH a été testé et s'est révélé efficace sur les dispositifs des principaux fabricants. Contactez france@tristel.com ou belgium@tristel.com pour plus d'informations.

SUR LA DÉTERGENCE

Capacité de nettoyage établie

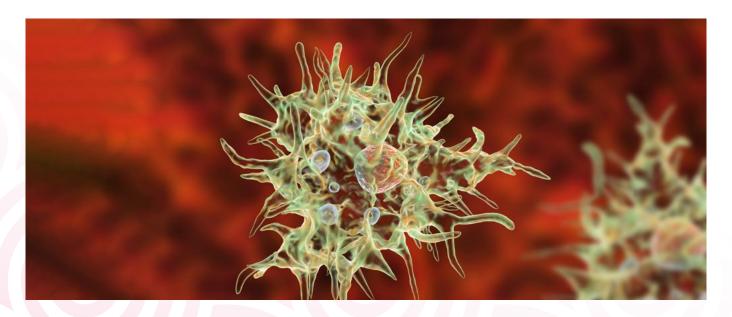
Le nettoyage se définit comme l'élimination des matières organiques présentes sur une surface. Il s'agit souvent de l'étape la plus critique du protocole de désinfection, car la présence de souillures peut réduire, voire inhiber, l'efficacité de nombreux désinfectants de haut niveau. Opter pour un désinfectant de haut niveau qui assure également une action de nettoyage efficace constitue le choix optimal pour garantir la sécurité des patients.

Tristel DUO OPH a démontré ses performances en tant qu'agent détergent, capable d'éliminer les souillures rencontrées dans les environnements de soins, telles que les protéines et l'hémoglobine.

Son efficacité détergente a été confirmée par des tests réalisés sur diverses surfaces cliniques, attestant de sa polyvalence en tant qu'agent détergent. Les critères d'acceptation relatifs aux marqueurs de souillure reposent sur des seuils de propreté établis par les normes en vigueur et la littérature scientifique.

MÉTHODE D'ESSAI	MATÉRIAU	MARQUEUR DE SOUILLURE	CRITÈRE D'ACCEPTATION	RÉSULTAT
	PVC	Protéine PVC		Validé
		Hémoglobine	≤2.2µg/cm²	Validé
AAMI ST98	Acier inoxydable	Protéine Acier inovydable		Validé
ET ISO 15883-5	(304)	Hémoglobine	≤2.2µg/cm²	Validé
	Stratifié HPL	Protéine	≤6.4µg/cm²	Validé
		Hémoglobine	≤2.2µg/cm²	Validé

LES ORGANISMES PRÉOCCUPANTS


Efficacité contre les agents pathogènes présents en ophtalmologie

Les dispositifs médicaux ophtalmiques sont particulièrement exposés aux micro-organismes préoccupants, en raison de leur utilisation au contact direct ou à proximité immédiate de la surface oculaire. Cette proximité accroît le risque de transmission d'agents pathogènes susceptibles de provoquer des infections graves telles que la conjonctivite, la kératite ou encore l'endophtalmie. Parmi les agents fréquemment impliqués figurent l'adénovirus, le virus de l'herpès simplex et *Staphylococcus aureus*. Pour réduire ces risques, il est indispensable de recourir à un désinfectant de haut niveau dont l'efficacité contre ces micro-organismes est scientifiquement démontrée, afin d'assurer une décontamination optimale et de prévenir toute contamination croisée entre patients.

En complément des micro-organismes obligatoires mentionnés par la norme EN 14885, **Tristel DUO OPH** a également été évalué contre les agents pathogènes particulièrement préoccupants en ophtalmologie.

Les kystes d'Acanthamoeba castellanii

Acanthamoeba est une amibe libre fréquemment présente dans les souillures, l'eau et, occasionnellement, dans certaines solutions pour lentilles de contact. Sous sa forme kystique, elle présente une résistance élevée aux stress environnementaux, ce qui la rend particulièrement difficile à éliminer. L'enjeu principal lié à cet organisme réside dans son implication dans la **kératite à Acanthamoeba**, une infection cornéenne grave qui, en l'absence de traitement, peut entraîner des lésions oculaires sévères et une perte irréversible de la vision. L'efficacité de Tristel DUO OPH contre les kystes d'Acanthamoeba castellanii a été démontrée au moyen d'un test en suspension réalisé dans un laboratoire accrédité ISO 17025. Des essais en triplicat avec une dilution à 80 % du produit ont été réalisés, au cours desquels l'échantillon testé a été mélangé à une substance interférente (0,3 g/L d'albumine bovine) ainsi qu'à une suspension contenant des kystes d'Acanthamoeba castellanii. Le temps de contact de 30 secondes a été respecté. Le produit a démontré une inactivation complète des kystes d'Acanthamoeba castellanii.

Tristel DUO OPH répond aux critères d'acceptation suivants : Levures et virus : réduction ≥ 4 log₁₀. Bactéries : réduction ≥ 5 log₁₀.

Adénovirus

L'adénovirus, un virus nu, constitue la principale cause de conjonctivite virale, une inflammation ou irritation de la conjonctive, représentant environ 65 à 95 % de l'ensemble des cas.² Extrêmement contagieux, il peut se transmettre par contact direct, par l'intermédiaire de surfaces contaminées, ainsi que via des instruments ophtalmiques utilisés lors des examens oculaires.³

Virus de l'herpès simplex (HSV)

Le HSV est un virus à ADN enveloppé pouvant provoquer diverses affections, dont la kératite herpétique (HSK), également appelée herpès oculaire, une infection susceptible d'entraîner de graves complications ophtalmiques. Hautement contagieux, il se transmet par contact direct avec des fluides corporels infectés ou des lésions. On estime que le HSV est responsable de 1,5 million de cas par an, dont environ 40 000 entraînent une déficience visuelle monoculaire sévère ou une cécité chaque année.³

Neisseria gonorrhoeae

N. gonorrhoeae, responsable de l'infection sexuellement transmissible gonococcie, peut également provoquer une conjonctivite gonococcique (CG), une affection grave susceptible d'entraîner des complications telles que la cécité ou une infection systémique. Environ 10 % des nouveau-nés exposés aux fluides contaminés par N. gonorrhoeae lors de l'accouchement développent une CG.4

Pseudomonas aeruginosa

P. aeruginosa est un pathogène opportuniste largement répandu dans l'environnement et représentant une menace importante pour la santé publique. À l'échelle mondiale, on estime que 10 à 15 % des infections nosocomiales sont dues à P. aeruginosa. De plus, il s'agit de l'agent pathogène le plus fréquemment identifié dans les cas de kératite associée aux lentilles de contact.⁵

Candida albicans

Les espèces de *Candida* comptent parmi les micro-organismes les plus fréquemment associés aux infections fongiques (candidoses), telles que la kératite, l'endophtalmie ou encore la candidémie. Une étude a rapporté que l'incidence de la candidose oculaire chez les patients atteints de candidémie variait entre 2 % et 26 %.⁷

Fusarium solani

La kératite à Fusarium est une infection oculaire sévère causée par l'organisme Fusarium solani. Elle constitue une cause fréquente de cécité monoculaire. On estime que la prévalence annuelle de la kératite fongique dépasse 1 million de cas dans le monde, Fusarium étant l'espèce la plus souvent isolée parmi ces infections.^{7,8}

Staphylococcus aureus

En plus de provoquer des infections cutanées et des tissus mous, *S. aureus* est une cause fréquente d'infections oculaires telles que la conjonctivite, la kératite et l'endophtalmie. On estime qu'environ 35 % de la population générale et 50 à 66 % du personnel hospitalier sont porteurs de *S. aureus*.⁶

LA RÉSISTANCE ANTIMICROBIENNE (RAM)

La résistance aux antimicrobiens (RAM) constitue un défi de santé mondiale. En effet, les micro-organismes continuent d'évoluer, rendant les traitements des infections courantes de moins en moins efficaces. Cela engendre une hausse des dépenses de santé, prolonge les temps de rétablissement des patients et augmente les taux de mortalité. Il est crucial que les désinfectants éliminent non seulement les micro-organismes multirésistants, mais qu'ils ne contribuent pas, dès le départ, à renforcer leur résistance.

D'après l'Organisation Mondiale de la Santé (OMS), en 2019, les bactéries résistantes aux antibiotiques étaient directement responsables de **1,27 million de décès**, auxquels s'ajoutaient environ **5 millions de décès** liés à ces infections.¹⁰

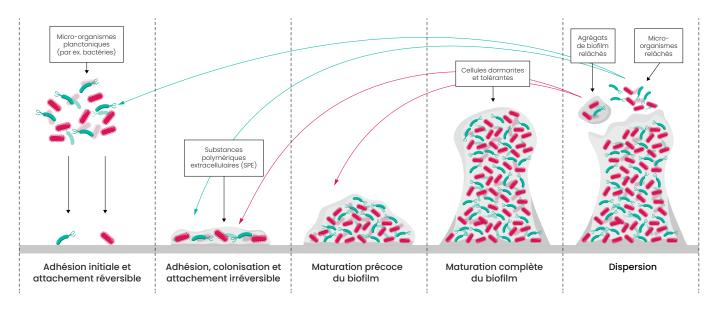
Tristel DUO OPH a passé avec succès les tests contre les agents pathogènes présentant des mécanismes de résistance connus, contribuant ainsi à limiter la propagation des organismes résistants aux antimicrobiens.

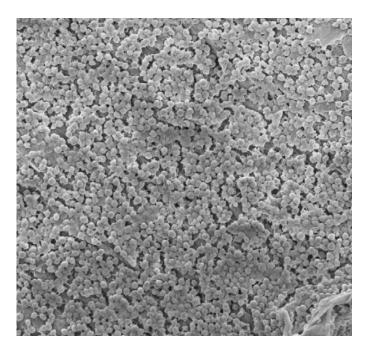
TYPE D'ORGANISME	ORGANISME	RÉSISTANCE AUX ANTIBIOTIQUES COURANTS	TEMPS DE CONTACT	RÉSULTAT
Spores bactériennes	Clostridioides difficile	Aminosides, lincomycine, tétracyclines, érythromycine, clindamycine, pénicillines, céphalosporines et fluoroquinolones ¹¹	30s	Validé
Levures	Candidozyma auris (anciennement Candida auris)	Azolés, polyènes et échinocandines ¹²	30s	Validé
	Staphylococcus areus résistant à la méthicilline (SARM)	Bêta-lactamines ¹³	30S	Validé
	Klebsiella pneumoniae produisant des bêtalactamases à spectre élargi (BLSE)	BLSE - Céphalosporines et monobactames ¹⁴	30S	Validé
Bactéries	Entérobactéries résistantes aux carbapénèmes (ERC) Klebsiella pneumoniae	ERC - Bêta-lactamines ¹⁴	30s	Validé
	Acinetobacter baumannii multirésistant (ABMR)	Pénicillines et céphalosporines, fluoroquinolones et aminosides ¹⁵	30s	Validé
	Entérocoques résistants à la vancomycine (ERV) Enterococcus faecium	Bêta-lactamines et aminosides ¹⁶	30S	Validé

Selon les critères d'acceptation de la norme européenne : Spores bactériennes et levures : réduction ≥4 log₁₀ Bactéries : réduction ≥5 log₁₀

Perspectives pour 2050

Selon l'OMS, la résistance aux antimicrobiens pourrait entraîner jusqu'à **10 millions** de décès chaque année.¹⁷


Le Groupe de la Banque mondiale estime que cette crise sanitaire pourrait coûter jusqu'à 1000 milliards de dollars supplémentaires aux systèmes de santé.⁷



LES BIOFILMS

Les biofilms représentent un problème majeur en milieu hospitalier. Ils créent un environnement protecteur pour les micro-organismes, leur permettant de survivre dans des conditions extrêmes, y compris en présence de désinfectants et d'antibiotiques. Ces communautés complexes de micro-organismes adhèrent à des surfaces, notamment les dispositifs médicaux et les surfaces environnementales, rendant leur élimination particulièrement difficile.

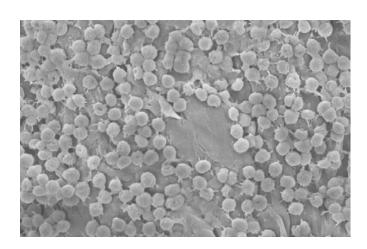
Les bactéries présentes dans un biofilm peuvent être de 10 à 1 000 fois plus résistantes aux antibiotiques que leurs homologues planctoniques.¹⁸

Les biofilms sont à l'origine d'infections persistantes, d'une résistance renforcée aux traitements et d'un risque accru de contamination croisée.

Leur présence sur le matériel médical, les surfaces de l'environnement hospitalier ou dans les systèmes d'eau favorise le développement d'infections nosocomiales (IN), constituant ainsi une menace sérieuse pour la sécurité des patients.

On estime que les biofilms sont impliqués dans 65 à 80 % des infections nosocomiales.

Ces infections sont souvent liées à la présence ou à la persistance de biofilms dans l'environnement ou sur les dispositifs médicaux associés. 18, 19



LES BIOFILMS, SUITE

> Tristel DUO OPH a été testé pour son efficacité et sa capacité d'élimination des biofilms humides et secs, assurant ainsi une action optimale dans ces environnements.

Un **biofilm humide** est un type de biofilm qui se forme dans des environnements riches en humidité, où les micro-organismes prolifèrent grâce à la présence d'eau et de nutriments.

Ces micro-organismes produisent une couche visqueuse composée de substances polymériques extracellulaires (EPS), incluant des polysaccharides, des protéines et des lipides, qui les enferme dans une matrice protectrice. Dans le domaine des soins de santé, les biofilms humides peuvent se développer dans les canaux des dispositifs médicaux réutilisables, à l'intérieur des conduites d'eau ou encore autour des éviers.¹⁸

MÉTHODE D'ESSAI	TYPE DE BIOFILM	TYPE DE SURFACE	ORGANISME	TEMPS DE CONTACT	RÉSULTAT
MBEC ESSAI (ASTM E2799-22)	Cultivé dans des conditions humides	Polystyrène	Gram négatif : Pseudomonas aeruginosa	30s	Validé
RÉACTEUR À BIOFILM CDC (ASTM E2871-22)	- maturation de 72 heures	Acier & PVC	Gram positif : Staphylococcus aureus	30s	Validé

Tristel DUO OPH a atteint une réduction ≥5 log₁₀.

Un **biofilm sec** est formé de micro-organismes qui se développent dans des environnements pauvres en humidité et en nutriments. Face à ces conditions extrêmes, ils produisent une matrice extracellulaire (SPE) plus épaisse et plus structurée, ce qui les rend particulièrement résistants. **Contrairement aux biofilms humides, les biofilms secs se forment sur des surfaces peu exposées à l'humidité, comme certains équipements médicaux ou surfaces environnementales sèches.** Leur état sec les rend non seulement difficiles à détecter, mais aussi plus résistants aux procédés classiques de nettoyage et de désinfection.²⁰

MÉTHODE D'ESSAI	TYPE DE BIOFILM	TYPE DE SURFACE	ORGANISME	TEMPS DE CONTACT	RÉSULTAT
RÉACTEUR À BIOFILM CDC	Sec (semi-hydraté) - maturation de 12 jours	Acier & PVC	Gram positif : Staphylococcus aureus	30s	Validé

Tristel DUO OPH a atteint une réduction ≥5 log₁₀.

RÉFÉRENCES

- Die Bedeutung von unterschiedlichem Kraftaufwand zwischen Nutzern bei der Desinfektion mit Tristel Duo, einem manuellen Wischprozess. (2023). Hygiene & Medizin.
- 2. Watson, S., Carbrera-Aguas, M. and Khoo, P. (2018). Common eye infections. pp.67–72. doi: https://doi.org/10.18773/austprescr.2018.016.
- Farooq, A.V. and Shukla, D. (2012). Herpes Simplex Epithelial and Stromal Keratitis: An Epidemiologic Update. Survey of ophthalmology, 57(5), pp.448–462. doi: https://doi.org/10.1016/j.survophthal.2012.01.005.
- Costumbrado, J., Ng, D.K. and Ghassemzadeh, S. (2020). Gonococcal Conjunctivitis. [online] PubMed. Available at: https://www.ncbi.nlm.nih.gov/books/NBK459289/.
- Gitter, A., Mena, K.D., Mendez, K.S., Wu, F. and Gerba, C.P. (2024).
 Eye infection risks from Pseudomonas aeruginosa via hand soap and eye drops. Applied and environmental microbiology. doi: https://doi.org/10.1128/aem.02119-23.
- 6. O'Callaghan, R. (2018). The Pathogenesis of Staphylococcus aureus Eye Infections. Pathogens, 7(1), p.9. doi: https://doi.org/10.3390/pathogens7010009.
- Petrillo, F., Sinoca, M., Fea, A.M., Galdiero, M., Maione, A., Galdiero, E., Guida, M. and Reibaldi, M. (2023). Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment. Antibiotics, 12(8), p.1277. doi: https://doi.org/10.3390/antibiotics12081277.
- Szaliński, M., Zgryźniak, A., Rubisz, I., Gajdzis, M., Kaczmarek, R. and Przeździecka-Dołyk, J. (2021). Fusarium Keratitis—Review of Current Treatment Possibilities. Journal of Clinical Medicine, 10(23), p.5468. doi: https://doi.org/10.3390/jcm10235468.
- Noel, D.J., Keevil, C.W. and Wilks, S.A. (2025). Development of disinfectant tolerance in Klebsiella pneumoniae. Journal of Hospital Infection, 155, pp.248–253. doi: https://doi.org/10.1016/j.jhin.2024.11.006.
- World Health Organization (2024). WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. [online] www.who.int. Available at: https://www.who.int/publications/i/item/9789240093461.
- Peng Z, Jin D, Kim HB, Stratton CW, Wu B, Tang YW, Sun X. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J Clin Microbiol. 2017 Jul;55(7):1998-2008. doi: 10.1128/JCM.02250-16. Epub 2017 Apr 12. PMID: 28404671; PMCID: PMC5483901

- Ademe M, Girma F. Candida auris: From Multidrug Resistance to Pan-Resistant Strains. Infect Drug Resist. 2020 May 5;13:1287-1294. doi: 10.2147/ IDR.S249864. PMID: 32440165; PMCID: PMC7211321.
- Ali Alghamdi, B., Al-Johani, I., Al-Shamrani, J.M., Musamed Alshamrani, H., Al-Otaibi, B.G., Almazmomi, K. and Yusnoraini Yusof, N. (2023). Antimicrobial Resistance in methicillin-resistant Staphylococcus Aureus. Saudi Journal of Biological Sciences, 30(4), p.103604. doi: https://doi.org/10.1016/j.sjbs.2023.103604.
- Huy, T.X.N. Overcoming Klebsiella pneumoniae antibiotic resistance: new insights into mechanisms and drug discovery. Beni-Suef Univ J Basic Appl Sci 13, 13 (2024): https://doi.org/10.1186/s43088-024-00470-4
- Manchanda V, Sanchaita S, Singh N. Multidrug resistant acinetobacter.
 J Glob Infect Dis. 2010 Sep;2(3):291-304. doi: 10.4103/0974-777X.68538.
 PMID: 20927292; PMCID: PMC2946687.
- Levitus M, Rewane A, Perera TB. Vancomycin-Resistant Enterococci. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513233/
- WHO (2023). Antimicrobial Resistance. [online] World Health Organization. Available at: https://www.who.int/docs/default-source/antimicrobial-resistance/amr-factsheet.pdf.
- Ledwoch, K., Dancer, S.J., Otter, J.A., Kerr, K., Roposte, D., Rushton, L., Weiser, R., Mahenthiralingam, E., Muir, D.D. and Maillard, J.-Y.. (2018).
 Beware biofilm! Dry biofilms containing bacterial pathogens on multiple healthcare surfaces; a multi-centre study. Journal of Hospital Infection, 100(3), pp.e47-e56. doi: https://doi.org/10.1016/j.jhin.2018.06.028.
- Maillard, J.-Y. and Centeleghe, I. (2023). How biofilm changes our understanding of Propretéing and disinfection. Antimicrobial Resistance and Infection Control, [online] 12(1), p.95. doi: https://doi.org/10.1186/s13756-023-01290-4.
- 20. K Ledwoch, Vickery, K. and Maillard, J-Y. (2022). Dry surface biofilms: what you need to know. British journal of hospital medicine, 83(8), pp.1–3. doi: https://doi.org/10.12968/hmed.2022.0274.

Pour plus d'informations sur Tristel DUO OPH, veuillez nous contacter

BELGIQUE ET GD DE LUXEMBOURG

Tristel SA, Smallandlaan 14 B, 2660 Anvers
T+32 (0)3 889 26 40 E belgium@tristel.com
W www.tristel.com/be-fr/

FRANCE

Tristel SaS, 130, Boulevard de la Liberté, 59000 Lille T +33 (0)3 66 88 01 84 E france@tristel.com W www.tristel.com/fr-fr/